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Understanding how drugs affect cellular network structures and how resulting signals are translated
into drug effects holds the key to the discovery of medicines. Herein we examine this cause-effect
relationship by determining protein network structures associated with the generation of specific in vivo
drug-effect patterns. Medicines having similar in vivo pharmacology have been identified by a
comparison of drug-effect profiles of 1320 medicines. Protein network positions reached by these
medicines were ascertained by examining the coinvestigation frequency of these medicines and 1179
protein network constituents in millions of scientific investigations. Interestingly, medicine associations
obtained by comparing by drug-effect profiles mirror those obtained by comparing drug-protein
coinvestigation frequency profiles, demonstrating that these drug-protein reachability profiles are
relevant to in vivo pharmacology. By using protein associations obtained in these investigations and
independent, curated protein interaction information, drug-mediated protein network topologymodels
can be constructed. These protein network topology models reveal that drugs having similar pharma-
cology profiles reach similar discrete positions in cellular protein network systems and provide a
network view of medicine cause-effect relationships.

Introduction

Understanding how medicines work has always been a
challenge in drug discovery.1 In the past, scientists typically
relied on observations of organism’s response to drug treat-
ment for predicting drug effects. Contemporary approaches,
on the other hand, rely largely on preclinical data and assess-
ments of cellular behaviors emerging from the interaction
between medicines and protein network components. Unfor-
tunately, despite the wealth of information gained in recent
years, statistics show that the limited information gathered
from preclinical studies is insufficient for predicting the full
spectrum of drug-effect observations in organisms. One likely
reason for this predicament is that current drug discovery
paradigms generally do not consider the plasticity of biologi-
cal systems, which adapt to or compensate for loss or decline
in specific protein functions by rerouting the information flow
in organism network systems.2 While the plasticity of living
organisms increases chance of survival in case of injury, it also
creates problems for drug-effect predictions that are based on
the examination of mechanism of action-centered cau-
se-effect relationships.3Thus, increasing current success rates
of drug discovery likely requires consideration of information
provided by the examination of system-wide, drug-effect
relationships.4-8 Working toward this goal, we and others
have recently described the development of methods provid-
ing quantitative comparisons of broad preclinical and clinical
drug-effect information for medicines.9-13 These methods
provide interesting and important associations betweenmedi-
cines, between proteins, and between effects and rely on
enormous amounts of information from disparate data

sources. In our investigations, all of the data are converted
into information spectra and normalized, and these spectra
are sorted by hierarchical clustering to provide drug, protein,
and effect associations.
Identifying the proteins which play a role in generating

drug-mediated organism effects is central to deciphering
system-wide drug-effect relationships. For identifying pro-
teins that are in some way contributing to a medicine’s bio-
logical profile, wehave relied on the coinvestigation frequency
of proteins with medicines in millions of reported studies.
Accumulating this information for a large number of medi-
cines provides a useful comparative tool for analyzing medi-
cines from a protein reachability perspective and, in addition,
provides a mechanism for understanding functional relation-
ships between proteins. By sorting medicine-protein coin-
vestigation frequency profiles via hierarchical clustering, both
medicine and protein associations are obtained. Medicine
associations group pharmacological agents by their ability
to reach similar proteins and affect their function. Protein
associations obtained in this fashion are an indicator of
protein functional coupling. This assumption is based on the
premise that proteins have a higher probability of being
coinvestigated and associated in structure-function studies
or are likely co-occurring with similar frequency in scientific
publications, if their pertinent functions, effects, or properties
are coupled or correlated.
In this investigation, we use dendrogram relationships of

proteins provided by the hierarchical clustering of the coin-
vestigation frequency spectra of 1320 drugs (Supporting In-
formation) and 1179 proteins (Supporting Information) to
identify the functional coupling of proteins. For the analysis
of this network reachability information, coinvestigation
counts greater than 100 were set to 100, since higher values
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would not increase the certainty of medicines reaching a
particular protein network position. This normalization stra-
tegy provides directly comparable network reachability infor-
mation spectra for each of the 1320 medicines and mitigates
existing variations in information density obtained, in parti-
cular, with medicines more frequently investigated. By utiliz-
ing over a thousand medicines and over a thousand proteins,
the overall results and interpretations from these investiga-
tions are not affected by the accuracy of individual data points
but rather determined by the overall shape of information
spectra (“fingerprint or discriminative properties of in-
formation”). The methodology is particularly well suited for
investigating interactions between complex protein network
systems which require analysis of heterogeneous, incomplete,
and noisy information sources.Herein,wedescribe a platform
for generating protein network topology map models which
describe the linkage between protein network components
associated with the generation of specific in vivo drug-effect
patterns.

Results

Aligning Preclinical and Clinical Information Spectra of

Medicines. Identification of medicines with similar effect
similarities is a prerequisite for evaluating the protein net-
work components associated with the characteristic in vivo
drug-effect patterns of these medicines. COSTART and
MedDRA descriptors, which are clinically validated inter-
nationalmedical terminology descriptors, have been used for
this purpose, and the pharmacological relevance of these
descriptors is well-known.9-13 By determining the cocitation
frequency of 1082 COSTART-effect descriptor terms
(Supporting Information) and 1320 medicines in millions
of published investigations and creating COSTART-effect
spectra for each medicine, system-wide in vivo drug-effect
profiles of these medicines can be compared. Close inspec-
tion of these COSTART drug-effect profiles reveals that,
while many medicines with similar molecular targets and
chemical architectures often produce very similar clinical
drug-effect profiles, a significant number of drugs with
different molecular targets and having different chemical
architectures also produce similar clinical effect profiles. For
example, the COSTART-based effect information profile of
rosiglitazone (1), a potent agonist of peroxisome proliferator-
activated receptor (PPAR)-gamma, exhibits 95% drug-effect
information profile similarity with glimepiride (2), which is an
insulin secretagogue and, like rosiglitazone, used for treatment
of diabetes. In contrast, the drug-effect spectra profile asso-
ciated with ciglitazone (5), another PPAR-gamma agonist,
exhibits only a 75% drug-effect profile similarity with its
mechanism equivalent, rosiglitazone (Figure 1C). Moreover,
comparison of the COSTART-effect profile of rosiglitazone
with the COSTART profiles of all 1320 medicines reveals that
medicines with different chemical structures and mechanisms
of action, such as, for example, the PPAR-alpha agonists,
fenofibrate and benzafibrate, HMGCoA reductase inhibitors,
simvastatin and atorvastatin, and the biguanide, metformin,
sharemore than70%effect profile similaritywith rosiglitazone.
By extending this scrutiny to other COSTART profiles in the
entire 1320 medicine database, many additional instances of
in vivodrug-effect similarities between structurally andmechan-
istically distinct medicines were revealed, indicating that me-
chanism of action and/or molecular structure similarity are (is)
not sufficient for explaining drug-effect similarities between
medicines.

The drug-protein coinvestigation frequency spectra for
medicines with similar effect spectra similarity were identi-
fied. These protein-based spectra are useful for capturing
and comparing cellular (preclinical) drug-protein informa-
tion of this medicine cohort.12 For example, examination of
drug-protein coinvestigation frequency spectra profiles and
the drug-effect cocitation frequency spectra profiles of the
12 medicines having the greatest effect spectra similarity to
rosiglitazone (Figure 1C) revealed that the two drug-effect
information profiles are highly correlated (R2= 0.917; p=
0.083). Interestingly, comparable correlations between
in vivo/in vitro drug-effect information profile similarities
were also observed with other groups of mechanistically and
structurally distinct medicines [i.e., clozapine and fluoxetine
(Figure 1D)]. For shedding light on the origin of these in vitro
and in vivo drug-effect similarities, hierarchical clustering of
the in vitro (drug-protein) and in vivo (drug-effect) spectra
profiles of 1320 medicines was carried out.

Identifying Protein Network Components Responsible for

Drug-Effect Patterns. Hierarchical clustering of the COST-
ART-effect profiles associated with the entire cohort of 1320
medicines using theUPGMAalgorithm and cosinus correla-
tion as similarity measurement simultaneously sorts 1320
medicines by similar effect spectra and 1082 effect terms
using these medicines. Accordingly, the “Y-axis” dendro-
gram (cluster) identifies associations of “COSTART effects”
found with these medicines and the “X-axis” dendrogram
identifies medicines sharing characteristic drug-effect pat-
terns. Similarly, hierarchical clustering of the protein co-
occurrence frequency information of the 1320 medicines
identifies on the “X-axis” groups of medicines that are most
frequently coinvestigated with similar proteins using the
1179 different protein network monitoring positions. The
vertically displayed dendrogram, in turn, identifies groups
(associations) of proteins that are most frequently coinves-
tigated in structure-function studies with 1320 medicines
(Figure 2D). Anticipating that high coinvestigation fre-
quency between specific drugs and specific proteins generally
reflects the capacity of thesemedicines tomodulate pertinent
protein functions, close inspection of the distribution of the
clustered drug-protein coinvestigation frequency informa-
tion reveals that associated medicines affect the functions of
discrete groups of proteins. In this way, the clustered coin-
vestigation frequency information between 1320 drugs and
1179 proteins not only provides evidence that associated
medicines in this data set reach discrete positions in the
cellular protein network system but they also affect the
functions of discrete sets of proteins.14-16

Comparing the distribution of the drug-protein coinves-
tigation frequency information associated with medicines
producing similar in vivo effects indicates that the generation
of characteristic drug-effect patterns in vivo is paralleled by
the generation of characteristic drug-effect patterns on dis-
crete sets of proteins (Figure 1C,D). Close inspection of
respective drug-effect patterns suggests that medicines shar-
ing similar in vitro (protein) and in vivo (COSTART) drug-
effect information profiles reach similar positions in respec-
tive network systems. Furthermore, since the generation of
specific drug-effect patterns in organisms is preceded by the
generation of discrete functional relationships between spe-
cific protein network components, the observed correlation
between these two different sets of network reachabi-
lity information suggests cause-effect relationships and
hence provides information on the functions of underlying
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large-scale network structures. Anticipating that the dyna-
mic modulation of the topology of the signal transduction
network may hold the key for understanding these cause-
effect relationships, a new approach was examined for con-
structing the router-level connectivity of these network
structures.

On Establishing the Router-Level Connectivity of Network

Structures. For identifying network structures involved in
information processing in cellular systems, several new
approaches have recently been developed.17,18 Most of these
approaches rely on information derived from yeast two-
hybrid experiments and the assumption that knowledge
pertaining to specific protein-protein interactions in yeast
can be extended to higher organisms.5,6,19-21 However, in
higher organisms, signal transduction network topologies
have been shown to vary with cell type, sex, age, time,
expression level of receptors/effectors/targets, nature of
posttranscriptionalmodifications, disease background, vari-
ations in environmental backgrounds, and many other fac-
tors modifying transcellular and intracellular communica-
tion pathways.5,6,19-23 Thus, investigating functions of
signal transduction networks encounters the formidable

challenge of assessing the pharmacological significance of
vast amounts of protein network connectivity information
residing in protein-protein interaction databases. Hence, in
the absence of correlated functional-effect information, con-
nectivity information derived from yeast two-hybrid experi-
ments describes, in principle, architectures of nearly infinite
sets of signal-inducible protein network topologies.22,23

Methods developed for identifying network topologies of
large-scale communication networks24-26 seemed appropri-
ate for shedding light on the router-level connectivity of
signal transduction networks. One of these methods, fre-
quently referred to as measurement-induced network topol-
ogy (MINT), relies on the identification of network positions
that can be reached by tracer probes (Figure 2A) sent from a
specific source to a specific destination.25,27 This approach
uses the clustering of network reachability information
associated with individual tracer probes for identifying net-
work nodes that are most frequently encountered by tracer
probes routed through the network system. Anticipating
that the most direct routes for information transfer involve
neighboring network positions, the clustering of network
reachability information is used in our case for identifying

Figure 1. Investigating COSTART cocitation and protein coinvestigation frequency profiles of medicines 1-4. (A) A portion of the
COSTART-effect spectra profiles of rosiglitazone (1), glimepiride (2), pioglitazone (3), and fenofibrate (4). The cocitation frequency between
drugs and effects is used to assess drug-effect similarity (gray=0, blue=50, and red=>100COSTART citations). (B)A portion of the protein
coinvestigation frequency spectra profiles for medicines 1-4. The coinvestigation frequency between drugs and proteins is used to assess
medicines’ effects on protein function (white= 0, red =5, and black=>20 protein citations). (C) A correlation exists between preclinical
(protein: Y-axis) and clinical (COSTART: X-axis) drug-effect information profiles for 12 medicines sharing greater than 70% COSTART-
effect spectra profile similarity correlations with rosiglitazone (1). Medicines with the greatest spectra correlations to each standard are shown
in order by color below each graph. (D) Correlation between the two profiles for 22 medicines sharing more than 40% COSTART-effect
spectra profile similarity with clozapine. (E) Molecular structures of rosiglitazone and glimepiride.
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associations of protein network nodes sharing high cotrans-
mission frequencies and for identifying associations of medi-
cine tracer probes encountering similar network positions
(Figure 2B). Connection of protein network nodes that are
most frequently encountered by discrete associations of
medicine tracer probes (tracer probes using similar routes
for the “end-to-end” transfer of information through the
network system) identifies the shortest routes (paths) for
information transfer through the communication network.28

By analysis of associations provided by the clustering of
network reachability information linked with all tracer
probes, the entire router-level network connectivity can be
identified (Figure 2C).
Accordingly, in lieu of tracer probes, herein we used 1320

medicines residing in published structure-function informa-
tion (drug-protein coinvestigation frequencies) for identify-
ing which of the 1179 protein network positions can be
reached by each of them. For identifying associations of
medicines likely using similar routes for transferring infor-
mation through the effect network systems, medicines
having high in vivo/in vitro correlations as illustrated in
Figure 1C,D were used. In this respect, the hierarchical
clustering of drug-COSTART cocitation frequency and
drug-protein coinvestigation frequency information were
used for identifying “end” (having similar effects on organ
systems) and “start” (reaching similar positions in protein
networks) positions of the information transfer associatedwith
medicines with similar in vivo and in vitro pharmacology.29-32

Concomitantly, we examined if protein associations pro-
vided by clustering of coinvestigation frequency information
identify router-level connectivities of the signal transduction
network.19,29,30

Protein Associations Identified by the Hierarchical Cluster-

ing of Drug-Protein Spectra. The horizontal (X-axis) den-
drogram obtained by clustering 1320 medicine-protein co-
occurrence frequency spectra (Figure 3A) identifies groups
of medicines with similar in vitro structure-function infor-
mation, and their spectra provide information on how often
specific signal transduction network positions are reached by
a particular group of medicines. The vertically displayed
dendrogram, in turn, identifies the frequency of information
exchanges between discrete groups of proteins and provides
a mechanism for assessing which groups of proteins are
reachable by medicine groups (Figure 3).
Anticipating that the network reachability information

provided by 1179 proteins (a subset of the proteome) is not
sufficient for identifying the large-scale framework of the
signal transduction network, the strategy adopted was to use
the 1179 proteins and curated protein interaction informa-
tion (yeast two-hybrid data) to identify additional proteins
not in our original data set that are capable of directly
interacting with the monitoring proteins. These directly
interacting, nearest neighbor proteins were anticipated to
be capable of directly transmitting the drug-induced infor-
mation flow between the 1179 monitoring positions. There-
fore, by determining protein associations via clustering of

Figure 2. Overall strategy for generating drug-induced protein network topology maps. (A) Text mining-derived drug-protein coinvestiga-
tion frequency information associated with medicines A-D is used for identifying protein network positions that can be reached during drug
treatment. This network reachability information is used for identifying the average shortest path distance (blue arrow) for transferring drug-
induced signals through the protein network. (B) Clustering network reachability information identifies a group of proteins, 1-5, most
frequently coinvestigated with medicines A-D. Inspecting dendrogram relationships identifies (a) cellular protein network positions that can
be reached by medicines A-D (tracer probes with similar pharmacology) and (b) associated protein clusters (e.g., proteins 1-5) most
frequently involved in conducting drug-inducible signals through the network system. (C) Translation of cluster proximity relationships
between proteins into network topology information. (D) A heatmap obtained by clustering protein coinvestigation frequency spectra of 1320
medicines using 1179 proteins identifies protein and medicine associations. (E) An example of protein dendrogram relationships (Y-axis)
obtained in clustering showing seven functionally coupled proteins. (F) A protein network topology map is generated by adding the minimal
number of neighbor proteins (in this case one: SREBF1) identified using curated protein interaction databases to directly connect all the
dendrogram proteins shown in panel E.
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protein network reachability information and adding selec-
ted nearest neighbor proteins, a mechanism was in place for
identifying shortest path distances conducting the informa-
tion flow induced by 1320 medicines through the signal
transduction network system.6,20-23

Starting with the premise that the coinvestigation frequen-
cies between proteins engaged in coupled functions are
higher than the coinvestigation frequency of proteins execut-
ing unrelated functions, the first goal in the analysis was to
investigate if protein associations identified in the various
vertical dendrogram sections occupy proximate protein net-
work positions.19 Accordingly, inspection of the protein
associations defined in the vertical displayed dendrogram
section of 1179 proteins identifies a prominent group of
259 proteins (Figure 3B), sharing a confidence in cluster
similarity value (CCS) of >0.426 [algorithm cluster scoring
wherein 0=lowest (no similarity) to 1=highest (identical)].12

Close inspection of relationships between these 259 proteins
identifies nine large protein associations (dendrogram
clusters), denoted as I, II, III, IV, V, VI, VII, VIII, and IX
(Supporting Information). Moreover, inspections of groups
I-IX indicate that each of thesemain dendrogram sections is
partitioned into several smaller protein associations, wherein
each of these smaller associations contains proteins that
are most frequently coinvestigated in structure-function

studies. For example, dendrogram section II (Figure 3B)
contains protein associations IIa-IIe (Figure 3C). More-
over, inspecting the coinvestigation frequency relationship
of proteins in associations IIa-IIe indicates that proteins
residing in individual associations are frequently coinvesti-
gated not only with members residing in the same subcluster
but also with proteins positioned in the adjacent subcluster
sections. This observation indicates that proteins in IIa-IIe
(some ofwhich are drug targets formarketed cardiovascular,
analgesic, and anxiolytic medicines) are engaging in drug-
induced information exchanges involving multiple combina-
tions of different groups of proteins and that each of these
proteins is, in principle, capable of affecting either directly or
indirectly functions of any one of the comembers of protein
associations IIa-IIe. Moreover, inspecting the coinvestiga-
tion frequency relationships of proteins in II and proteins
located in associations I, III, IV, V, VI, VII, VIII, and IX
indicates proteins in II are also frequently coinvestigated
with proteins residing in associations I, III, IV, V, VI, VII,
VIII, and IX. This observation indicates that proteins in II
are not only capable of affecting the functions of other
comembers but also have the capacity of affecting the
functions of proteins residing in associations I and III-IX
(Figure 3B). These observations suggest that these 259 pro-
teins form an integrated interaction network.

Figure 3. Protein associations resulting from hierarchical clustering of the coinvestigation frequency information of 11 million structure-
-function studies involving 1179 proteins and 1320 medicines. (A) The horizontal dendrogram (not shown) identifies protein coinvestigation
frequency spectra similarity of 1320medicines, and the vertical dendrogram (shown) identifies medicine coinvestigation frequency similarity of
1179 proteins. Color shadings are used for identifying coinvestigation frequencies: red denotes frequencymeasures in the range 1-20 and black
exceeding >20 literature citations. Network reachability information (protein profiles) is shown for (1) a statin, (2) 5 dihydropyridines, and
(3) 15 benzodiazepines. (B) An enlargement of a vertical dendrogram section denoted as I-IX is shown for identifying a cohort of 259 proteins
that are most often coinvestigated in structure-function studies with the 1320 medicines. (C) Further enlargement of a subsection of this
dendrogram, denoted as II, for illustrating that the coinvestigation frequency information formedicines in the three highlighted pharmacology
classes exhibits characteristic coinvestigation frequency patterns (evidence that similar medicines reach discrete protein network positions).



Article Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 8043

Using Protein Associations Established by Hierarchical

Clustering To Construct Protein Network Topology Maps.

Clustering-derived protein associations (Figure 3B,C) iden-
tify proteins which are functionally coupled. In many cases,
as anticipated, the direct connectivity between these proteins
can be corroborated by curated protein information. The
pertinent data used to identify direct protein-protein inter-
actions can be extracted from the Ingenuity Pathways
Knowledge Base (Ingenuity Systems, www.ingenuity.com),
a reliable source of independent protein-interaction infor-
mation. Thus, the “direct” protein-interaction information
used for corroborating the functional coupling of dendro-
gram proteins includes activation of function, changes in
protein expression levels, inhibition of protein functions,
changes in a protein’s localization, changes in the degree of
phosphorylation, effects on protein-DNA interactions,
effects on protein-protein interactions, effects on protein-
RNA interactions, the proteolysis of binding partners, the
regulation of a protein’s ligand binding capacities, and
changes in transcription rates and effects on the transloca-
tion of interacting proteins as criteria for direct protein
coupling. If dendrogram proteins are not directly coupled,
additional proteins (nearest neighbor proteins) are identified
in the Ingenuity platform and used to link all of the dendro-
gram-associated proteins. This particular protein network
connectivity strategy was selected based on the anticipation
that direct interactions between nearest neighbor proteins
would provide the least ambiguous means for ascertaining
shortest path, distance-network topology, enabling efficient
information transfer.19 Accordingly, for determining net-
work proximity relationships19 between the 259 member
proteins in I-IX, nine network fragments, In-IXn, were
constructed. The construction of respective network frag-
ments involved connecting all of the proteins in individual
dendrogram sections I-IX either directly or by adding
nearest neighbor proteins to produce network fragments
In-IXn via shortest path distance (see Experimental Section
for details).
Close inspection of the topology of protein network frag-

ments IIan-IIen (Figure 4) reveals that the dendrogram
proteins of each of the five subsets of II (Figure 3C) can be
placed in integrated protein networks having direct pro-
tein-protein interactions once neighbor proteins are added.
Interestingly, proteins in IIen are also found in IIbn-IIdn

(Figure 4) providing a mechanism for protein network over-
lap. The fact that proteins residing in cluster dendrograms
IIa-IIe are reachable by many medicines and are capable of
directly interacting with the same nearest neighbor proteins
suggests that the protein connectivities identified in dendro-
gram sections IIa-IIe are capable of directly transmitting
information to respective cluster comembers. Since network
topologies IIan-IIen are based on the clustered structure-
-function information provided by all of the 1320 medi-
cines, network topologies IIan-IIen (forming the integrated
protein network topology IIn) identify the likely average,
shortest path distances (fastest route) of the information
transfer, induced by the 1320 medicines through this parti-
cular signal transduction network section.15

Likewise, for determining routes for the drug-inducible
information transfer between proteins identified in dendro-
gram section II and proteins identified in dendrogram sec-
tions I and III-IX (Figure 5A), the network topology
overlap between these different network fragments was
determined. This network topology overlap was determined

by identifying protein network nodes shared by network
fragments In-IXn (Supporting Information). Inspection of
connectivity between network nodes shared by different
network fragments indicates that fragments In-IXn have
overlapping network topologies (Figure 5B). Moreover,
examining proximity relationships between network nodes
in fragments In-IXn indicates that the relationships between
proteins identified through the clustering of medici-
ne-protein coinvestigation frequency information involve
either direct interactions between cluster proteins or direct

Figure 4. The construction of protein network fragments using
proteins in dendrogram subsections IIa-IIe (Figure 3C). (A) Net-
work fragments IIan-IIen are constructed using proteins (black
font) in dendrogram sections IIa-IIe and by identifying directly
interacting nearest neighbor proteins (shown in blue font) using the
Ingenuity platform. Only 2 of the 34 proteins in dendrogram section
II (sigma and PDE 5A) could not be connected using Ingenuity’s
direct protein interaction information. Each of the five network
fragments of II contains a collection of functionally linkable protein
network nodes and is depicted by respective colors: light blue (IIa),
green (IIb), dark blue (IIc), red (IId), and yellow (IIe). (B) The
topology overlap between IIan-IIen creates a larger network frag-
ment IIn, seamlessly integrating fragments IIan-IIen. Proteins
(shown in magenta) residing in overlapping network sections (e.g.,
SP1, CREB1, SRC) are not unique to a particular fragment and
create overlapping network topologies.
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interactions of the cluster proteins with the same nearest
neighbor proteins. This observation indicates that all of the
259 proteins residing in dendrogram sections I-IX are
capable of directly exchanging information via shortest path
distances. From a drug-effect prediction perspective, most
noteworthy is the observation that the topology describing
interactions between 259 proteins in the In-IXn protein
network fragment enables information transfer between
most known biochemical pathways. Hence, this particular
network topology is anticipated to be capable of modulating
a plethora of different cellular functions.

Drug-Induced Protein Network Topology Models. The
large-scale, router-level protein network topology (In-IXn)
map (shown in Figure 5B,C) is a working model which
describes the average shortest path distance for routing drug-
inducible signals for each of the 1320 medicines through the

protein network. This “average shortest path distance”
topology serves as standard foundation for constructing
network topologies induced by individual medicines. This
model is used to investigate how perturbations on this net-
work topology through pharmacological meansmight affect
organisms’ response to drug treatment. Use of this model for
examining cause-effect relationships of medicines assumes
that drugs are freely distributed throughout the body’s organ
systems and that the router-level, signal transduction net-
work topology between different cell types and differentia-
tion stages is similar.
Construction of the protein network topologies that can

be induced by an investigated medicine starts with the
constructed, standard protein network topology map
(In-IXn) and identification of network nodes that can be
reached by the investigated medicine. Nodes reachable for a

Figure 5. Investigating drug-effect similarities using drug-induced protein network topologymaps. (A)Dendrogram sections I-IX containing
259 proteins (Figure 3B) are used for generating a protein network topology map In-IXn containing these proteins. (B) Comember proteins in
IIn and In and IIIn-IXn create overlapping network topologies. (C) By superimposing individual drug-protein coinvestigation frequency
information (white=0, red=20, and black=>50) on the drug-induced protein network topology map In-IXn, shortest path distances for
information transfer can be described for each of the 1320 medicines. A protein network topology map for rosiglitazone is shown. (D) An
integrated protein network topology map is shown for rosiglitazone containing the minimal number of proteins in In-IXn required to connect
all of its network reachable proteins. The drug target (PPARG) of rosiglitazone is shown in yellow. (E) An integrated protein network topology
map for glimepiride, whose putative drug target (ABCC8), is highlighted.
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medicine are identified by amedicine’s protein co-occurrence
frequency reports and are color coded to reflect the fre-
quency of protein-medicine literature reports. Topology
maps unique to each of the 1320 medicines in our investiga-
tion can be constructed in this way.
For investigating the origin of the drug-effect similarity

between rosiglitazone (1) and medicines 2-12, which have
similar preclinical and clinical drug-effect information pro-
files (Figure 1C), protein network topology maps for 1-12

were constructed, each identifying the shortest path for
routing signals through the network. This construction
involves identification of network nodes reachable by medi-
cines 1-12 and connection of network reachable nodes in a
manner that creates shortest path distances between net-
work-reachable nodes. Structure-effect comparison between
medicines 1-12 requires comparison of these 12 topologies.
Facilitating this comparison is the fact that the construction
of individual drug-inducible topologies uses, as standard
framework, the router-level connectivity of the signal trans-
duction network, connecting signals induced by 1320 medi-
cines (In-IXn). As illustrated in Figure 5D,E, rosiglitazone
(1) and glimepiride (2), which have different protein targets
but very similar drug-protein coinvestigation frequency
spectra, reach identical protein network positions and hence
use very similar “shortest path distance” protein network
topologies for conducting signals through the protein net-
work system. The induction of similar shortest path distance
topologies for conducting signals induced by medicines
through the network is anticipated to lead to the cross-
linking of similar biochemical pathways and concomitant
generation of similar cellular output signals. Distribution of
these output signals throughout the body would lead to
similar drug effects on organ systems. Supporting this pre-
mise is the statistically significant correlation between pro-
tein network reachability information and in vivo drug-effect
patterns characterizing medicines 1-4 (Figure 1C). This
premise also provides a rationale for why rosiglitazone (1)
and glimepiride (2), which have different chemical architec-
tures and different putative mechanisms of actions, have
95% in vivo drug-effect profile similarity, since these medi-
cines induce nearly identical shortest path distance topolo-
gies for routing respective signals through the protein
network (Figures 1A-C and 5D,E).

Discussion

Analysis of broad in vivo and in vitro structure-function
information associated with 1320 medicines suggests that the
shortest path distance routing of the drug-induced, informa-
tion flow through the signal transduction network determines
the pharmacologyofmedicines.Accordingly, the clustering of
coinvestigation frequency informationbetweenmedicines and
proteins has been used for creating a working model describ-
ing the router-level connectivity of the cellular signal trans-
duction network. By utilizing both protein network reacha-
bility information as well as clinical-effect information of
medicines, cause-effect relationships ofmedicines can be eva-
luated from a protein network perspective. For validating this
approach, cause-effect relationships of drugs with different
mechanisms of action and molecular architectures were exa-
mined. These examinations reveal that medicines produce
similar in vivo drug effects if they induce similar shortest
path distances for transferring information in the signal
transduction network, leading to the cross-linking of similar
biochemical pathways and the generation of similar cellular

output signals (similar effects on the body’s organ systems).
Moreover, this analysis suggests that similar shortest path
distance topologies can be involved in conducting signals
originating at different protein network positions. This ob-
servation also suggests that the compensatory properties of
biological systems, resulting from rerouting of cellular infor-
mation flows in case of injury, may have their roots in the
router-level connectivity of the signal transduction network,
enabling the steering of external information along similar,
shortest path distances. Hence, the perspective gained from
examining medicines 1-12 also suggests that “off-target
activities” of medicines may be an attribute of the signal
transduction network connectivity and not necessarily a
medicine’s target promiscuity.
In the end, comparison of protein network reachability

information in combination with targeted in vitro and in vivo
experimentation may well provide a cost-effective avenue for
assessing if experimental medicines will indeed produce clin-
ical effects that differ substantially from those produced by
drugs with establishedmechanisms of action33,34 and whether
expensive research for improving target selectivity of experi-
mental medicines should be undertaken. In addition, analysis
of clinical symptoms and drug-effect patterns and associated
signal transduction network topologies may provide clues on
how the router-level, signal transduction network topology is
altered in disease and how this information flow is rerouted
through administration of medicines. In this respect, drugs
and disease have the same target: the router-level connectivity
of the signal transduction network. Understanding how com-
pensatory mechanisms in biological systems work may open
up new avenues for the discovery of medicines.

Experimental Section

Medicine-Protein Coinvestigation Frequency Data. More
than 5000 biomedical journals containing over 15 million cita-
tions from Medline 2006 were scanned for co-occurrence of
query compounds (Supporting Information) and proteins
(Supporting Information), resulting in 10.9 million com-
pound-protein associations across more than 1 million ab-
stracts.35 A full matrix of 1320 compounds with coinvesti-
gation counts against 1179 proteins was created using the
Python coding language (www.python.org). This data set was
then normalized, i.e., wherein all coinvestigation counts >100
were set to 100. Bootstrapping experiments on the coinvestiga-
tion matrix were conducted as previously described.36

Medicine-COSTART Cocitation Frequency Data. The
COSTART cocitation matrix creation was based on previously
published textminingwork,12whereby cocitationwas defined as
the occurrence of both a compound name and COSTART
medical terminology (Supporting Information) within the same
Medline abstract. A full matrix of 1320 compounds with cocita-
tion counts against 1082COSTART termswas created using the
Python coding language (www.python.org). This data set was
normalized as described above.

Sorting Drug-Effect Spectra. Spotfire Decision Site 8.1 soft-
ware was used for hierarchical clustering and profile similarity
determinations.9-12

Constructing Drug-Induced Protein Network Topology Maps.

The vertical displayed dendrogram sections derived from the
clustering of protein-medicine coinvestigation frequency infor-
mation identifies clusters (associations) of proteins with unique
confidence in cluster similarity values (CCS) (scoring wherein
0=lowest to 1=highest). Network fragments were constructed
by first connecting the proteins in individual dendrogram sec-
tions that are most closely aligned (having the highest CCS
values) and reported to be directly connected (corroborated by
Ingenuity’s direct protein-interaction information). For those
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highly associated dendrogram proteins that cannot be directly
connected, nearest neighbor (filler) proteins were identified
using the Ingenuity platform. Network fragments were gener-
ated by starting with the cluster proteins with highest CCS
values and adding sufficient neighbor proteins so that all cluster
proteins are connected. For example, using the dendrogram-
derived protein associations in clusters I-IX (Supporting In-
formation) and the minimum number of proteins required to
connect all the dendrogram proteins in I-IX, protein network
fragments In-IXn (Supporting Information) were generated.
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